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Minimal relaxation law for compaction of tapped granular matter

Stefan J. Linz and Annekathrin Do¨hle
Theoretische Physik I, Institut fu¨r Physik, Universita¨t Augsburg, D-86135 Augsburg, Germany

~Received 6 October 1998!

Granular systems can compact under the influence of sufficiently strong, successive tapping. Recent experi-
mental investigations show that the packing fraction obeys a very slow relaxation to a final, dense packing
fraction that is basically proportional to the inverse of the logarithm of the tap number or time. We provide a
simple macromechanical argument that explains this inverse logarithmic relaxation in time in all functional
details. By considering the asymptotic limits of the resulting relaxation law, we show that the relaxational
dynamics of the compaction process can be interpreted as a combination of a biased void diffusion for short
times and a collective reorganization for large times.@S1063-651X~99!02611-2#

PACS number~s!: 81.05.Rm, 45.05.1x, 83.20.Bg
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I. INTRODUCTION

It is a part of our childhood experience that dry sand in
pail can be densified by tapping the pail on the ground if
tapping strength is great enough. This property, the den
cation of granular matter by reducing the void volume b
tween the grains, is commonly called compaction. Granu
matter such as sand and powder consists of large collec
of dry massive macroscopically extended particles that in
act only via repulsive forces. It is the absence of attract
forces between the grains that allows for loosening and r
ganization of the grains under the influence of external for
such as tapping or shaking. This feature shows very
dently the distinction of granular matter from ordinary soli
and Newtonian fluids.

Despite its obvious technological and practical imp
tance, detailed quantitative experimental studies on the c
paction behavior of granular matter have begun only rece
~for an overview, cf. Refs.@1–3#!. In a series of semina
works, the group of Jaeger and Nagel@4–6# have investi-
gated the ensemble-averaged settling of monodisperse g
lar particles in a long vertical tube into more compact
states by applying periodic vertical tapping with a const
tapping intensityG. Since the tapping intensityG is defined
by the ratio of the peak intensity of the tap and the grav
tional acceleration, one expects that only forG.1 do the
grains experience enough upward acceleration to loosen
to reorganize.

In their experiments performed for tapping intensitiesG
.1.4, Knight et al. @4# were able to fit their data for the
increase of the packing fractionr with time or tap numbert
to a surprisingly simple functional form, given explicitly b

r~ t !5r`2
r`2r0

11B ln~11t/t!
. ~1!

Here, B and t are coefficients that strongly depend on t
tapping intensityG, but not on the timet. r05r(t50) de-
notes the initial packing fraction of a loosely packed sta
andr`5r(t5`) denotes the final packing fraction that al
depends onG. This comparatively slow relaxation to the fi
nal packing fraction did not seem to corroborate previo
PRE 601063-651X/99/60~5!/5737~5!/$15.00
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numerical studies@7,8#, in particular the algebraic relaxatio
of the packing fraction with time suggested by Honget al.
@8#.

In the wake of this study, several apparently rather d
tinct theoretical explanations based on microscopic@9,10#,
mesoscopic@11–13#, or macroscopic@14,15,17# ideas have
been developed to understand the origin of the compac
formula, Eq.~1!. Although Eq.~1! is clearly the result of a
highly complicated micromechanical reorganization of t
collective of grains, is there a simple macromechani
mechanism that explains the functional details of Eq.~1!?
The answer to this question seems still to be unresolved
is the main topic of this paper.

The purpose of our paper is fourfold. First, we show th
the functional form of the fit formula, Eq.~1!, can be derived
from one simple mean-field argument about the dynam
changes of the void volume under tapping. Second, by c
sidering the asymptotic limits of the resulting relaxation la
we interpret our mean-field argument as a smooth interp
tion between two known mechanisms, namely the bia
void diffusion @8# and collective reorganization@14,15#.
Third, we show that a previously suggested strobosco
model @17# is also consistent with the proposed dynamic
mechanism. Fourth, we propose a simple picture of the so
compactible phase transition that is based on our mean-
argument.

II. MACROSCOPIC PICTURE
OF THE COMPACTION PROCESS

On a purely macroscopic level, the total volumeVt of a
granular system consisting of a fixed, large number of p
ticles is made up of two components:~i! the grain spaceVg
representing the part of the total volumeVt that is occupied
by the grains, and~ii ! the void spaceVv characterizing the
empty intergranular part of the total volumeVt . The void
spaceVv , again, can be divided into two components.~i!
The removablevoid spaceVr . This part characterizes th
contribution to the void volume that can be effectively e
tracted from the granular system by tapping.~ii ! The irre-
movablevoid spaceVi . This part consists of the contributio
to the void volume that survives the compaction process
results from the fact that a compacted granular system ca
5737 © 1999 The American Physical Society
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be totally space filling. The grain spaceVg and the irremov-
able void spaceVi do not depend on the time or tap numb
during the compaction process, whereas the removable
spaceVr(t) diminishes under tapping from initial removab
void volumeVr(0) to the minimal removable void volume i
the long time limit,Vr(`)50. Therefore, the time depen
dence of the total volumeVt during the compaction proces
is determined by

Vt~ t !5Vg1Vv~ t !5Vg1Vi1Vr~ t ! ~2!

with Vr(t) being the only time-dependent contribution. T
packing fraction is defined by the ratio of the grain space
the total volume,

r~ t !5Vg /Vt~ t !, ~3!

whereas the effective reduced void volume is determined
the ratio of the removable void volume and the total volum

x~ t !5Vr~ t !/Vt~ t !. ~4!

Obviously,r(t) andx(t) are related byVr(t)r(t)5Vgx(t).
For the following, it is convenient to introduce theinverse
(effective) void ratiogiven by

X~ t !5x~0!/x~ t !, ~5!

whereX(t) can vary between its initial valueX(0)51 and
the final valueX(`)5`.

III. MINIMAL RELAXATIONAL LAW

Here, we want to show that the inverse logarithmic rela
ation of the packing fraction, Eq.~1!, found by Knightet al.
@4# can be derived from onesingle mean-field argumen
about the dynamics of the~inverse! void ratio with time or,
respectively, tapping. Using the aforementioned macrosc
picture, our main statement about the time evolution of
compaction process driven by periodic tapping can be
mulated as follows:

If the time rate of change of the inverse void ratio dX/dt
slows down exponentially with increasing inverse void ra
X, the packing fraction obeys the functional form of Eq. (!.

To verify this statement, we write the basic assumpt
explicitly in the form

Ẋ~ t !5m1 exp@2m2X~ t !# ~6!

with m1 and m2 being positive constants with respect
time. In general, however, they will depend on the tapp
intensityG and the micromechanical properties of the gran
lar system. A straightforward integration of Eq.~6! yields

E
0

t

dt5
1

m1
E

1

X(t)

dX exp~m2X!

52
em2

m1m2
„12exp$2m2@12X~ t !#%…, ~7!

where the initial conditionX(0)51 has been inserted. Solv
ing the resulting implicit equation forX(t), one immediately
infers that the inverse void ratio evolves according to
id
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X~ t !511
1

m2
ln@11m1m2e2m2t#. ~8!

Using the fact that the inverse void ratioX(t) and the pack-
ing fractionr(t) are related by~cf. the Appendix!

r~ t !5r`1~r02r`!X21~ t ! ~9!

and identifying the constants entering in Eq.~1! and Eq.~8!,

1/B5m2 and 1/t5m1m2e2m2, ~10!

one immediately recovers the functional form of Eq.~1!.
As a consequence, theminimal relaxation lawfor com-

paction driven by periodic tapping expressed in terms of
coefficientsB and t introduced by Knightet al. @4# reads
explicitly

tẊ5B exp@~12X!/B# ~11!

and is one of the central results of this paper. The limitst
→` or B→0 of Eq.~11! represent in a natural way the sol
matter limit where no compaction can take place at
X(t)5X(0) for all t.

Next, it is important to note that the coefficientsB andt
are not independent as far as their functional dependenc
the tapping intensity is concerned. Based on the experime
results@4#, it has been suggested in Ref.@17# that the coef-
ficientsB andt obey the relationB5kt, with k being inde-
pendent of the tapping intensityG and given byk'1/18 for
the experimental setup in Ref.@4#. Therefore, we can recas
Eq. ~11! in the form

Ẋ5k exp@~12X!/kt#, ~12!

where the characteristic decay timet is now the only coef-
ficient that depends on the tapping intensityG. Typically, t
varies from values of the order 105 for tapping intensities
1.4,G,2 to values of about 2 forG.3 @4#.

IV. CONNECTION WITH ALTERNATIVE MODELS

To relate Eq.~6! to previously suggested mesoscopic a
guments@8,14,15# for relaxational compaction, it is conve
nient to introduce thereduced packing fraction

A~ t !5
r~ t !2r`

r02r`
. ~13!

This quantity can vary betweenA(0)51 andA(`)50 dur-
ing the compaction process. Noting that~i! the reduced pack-
ing fractionA(t) is related to the inverse reduced void rat
X(t) by A(t)5X21(t) ~cf. the Appendix! and ~ii ! Ȧ(t)5

2X22(t)Ẋ(t)52A2(t)Ẋ(t) holds, the minimal relaxation
law, Eq. ~12!, expressed in terms ofA(t) reads

Ȧ52kA2 exp@2~12A!/ktA#. ~14!

Using Eq.~9!, one directly infers that Eq.~14! possesses the
solution A(t)51/@11kt ln(11t/t)#. Next we discuss the
asymptotic limits of Eq.~14! for small and large times or tap
numbers.
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Since the compaction process starts withA(0)51, the
short time asymptoticsof Eq. ~14! can be obtained by ex
panding the exponential term in Eq.~14! aboutA51. This
yields

Ȧ52kA2@12~12A!/ktA1higher-order terms#.
~15!

As a consequence, Eq.~14! reduces toȦ52kA2 if 1 1kt
@1/A or, equivalently,t!2t. This directly leads to an alge
braic decayA(t)51/(11kt) and, therefore, to a relaxatio
of the packing fractionr(t)}1/t for short times,t!2t.
Based on the idea of biased void diffusion as a result
tapping granular matter of heightz(t) in a vertical tube,
Hong et al. @8# found an algebraic relaxation ofz(t) to a
finite heightzc5z(`) being proportional to the time or ta
numbert and saturating after a finite timetc . Since the mass
of the granular system is conserved and, therefore, the he
z(t) is inversely proportional to the packing fractionr(t),
Hong et al.’s result @8# agrees with our findings for shor
enough timest!2t.

To understand the long time asymptotics of Eq.~14!, it is
convenient to recast Eq.~14! in the form

Ȧ52k exp~1/kt!exp@2~1/ktA!~12kt2A ln A!#.
~16!

The reduced packing fractionA(t) becomes very small in the
long time limit. This implies that~i! A ln A approaches zero
as t→` and ~ii ! Eq. ~14! is asymptotically equivalent toȦ
52k exp@2(12A)/ktA# for long times or tap numbers
„This argument can be generalized. Any relaxational dyna
ics of the formȦ5QN(A), with QN(A)52 f 1AN exp@2(1
2A)/ f 2A# with f 1 and f 2 being positive coefficients andN
being an integer and positive, can be rewritten in the fo
Ȧ5QN(A)52 f 1 exp(1/f 2)exp@2(1/f 2A)(12 f 2NA ln A)#.
Since the termA ln A approaches zero asA approaches zero
QN(A) approaches asymptoticallyQ0(A) in the limit A→0.
Therefore, any relaxational dynamics of the formȦ
5QN(A) will eventually show a relaxation proportional t
1/ln t.… The latter relaxation law, however, is exactly th
functional form that results from the collective reorganiz
tion argument put forward by Ben Naimet al. @14# on the
basis of the one-dimensional parking lot model@14# and by
Boutreux and de Gennes@15# on the basis of a free volum
argument. It is based on the idea@3# that an increase of the
density of an already packed system requires a collec
reorganization of a large part of the system and is expon
tially costly for particles that can move independently a
randomly.

To summarize, our macromechanical argument~6! or,
equivalently, the relaxation law for the reduced packing fr
tion, Eq. ~14!, unifies in a natural waytwo mesoscopic
mechanisms for granular compaction that are dominant
different time scales of the compaction process and areboth
needed to explain the experimental result, Eq.~1!. For short
timest!t, biased void diffusion@8# with an algebraic relax-
ation r(t)2r(`)}1/t dominates granular compaction
whereas the collective reorganization with a relaxationr(t)
}1/ln t dominates for long timest@t. The crossover of
f

ht

-

-

e
n-

-

n

these effects happens whent reaches the size oft. Due to the
aforementioned strong dependence of the relaxation timt
on the tapping amplitudeG @4#, the range of dominant void
diffusion can vary over several decades. In particular,
biased void diffusion seems to be an essential ingredient
the understanding of compaction for comparatively low ta
ping amplitudes, 1,G,2.

V. DERIVATION OF THE RELAXATIONAL LAW
FROM THE STROBOSCOPIC MODEL

Here, we show that the minimal relaxation law for com
paction, Eq.~11!, can also be interpreted as the coars
grained time-continuous limit of the stroboscopic model
compaction proposed previously in Ref.@17#. This model is
also supported by the cluster dynamical approach
Gavrilov @12#. Based on a comparatively crude dynamic
modeling of the response of the granular system to a sin
tap, it has been suggested in Ref.@17# that the relaxational
compaction process is governed by a stroboscopic nonlin
map or difference equation for thecompaction ratio, i.e., the
appropriately rescaled packing fraction after each tapn
51,2,3, . . . ,

an5
rn2r`

r02r`
. ~17!

The difference equation governing the stroboscopic dyna
ics of the compaction process is given by@17#

an5 f ~an21 ,n!5
an21

11hnan21
, ~18!

where hn denotes a memory term that depends on the
numbern via

hn5C/~11n/n! ~19!

and labels how far the compaction process has progre
already. In Eq.~19!, C andn are positive coefficients that ar
independent of time, but dependent on the tap intensity.
ing the initial conditiona051, the exact solution of Eqs
~18! and ~19! can be expressed in terms of digamma fun
tions and can be considered as the iterated equivalent@17# of
Knight et al.’s formula, Eq.~1!.

A time-continuous coarse-grained relaxational law that
terpolates the discrete variations of the compaction ratio
sulting from Eq.~18! can be achieved by substituting

an21↔A~ t !, ~20!

an2an21↔Ȧ~ t !, ~21!

hn↔h~ t !5C/~11t/n!, ~22!

whereA(t) is merely but the reduced packing fraction intr
duced in Eq.~13!. The resulting time-continuous relaxation
equation reads

Ȧ~ t !5S 1

11h~ t !A~ t !
21DA~ t !. ~23!
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Since the coefficientC is typically of the order 1022 @17# and
A(t)<1 for the whole compaction process, one infers t
the producth(t)A(t) in the denominator of Eq.~23! is small
and even diminishes as time or compaction proceeds. Th
fore, we can expand the denominator in Eq.~23! in powers
of h(t)A(t) and obtain in the leading-order approximation

Ȧ~ t !52h~ t !A2~ t !. ~24!

Solving Eq.~24! with h(t) given by Eq.~22! and the initial
condition A(0)51 yields A(t)51/@11Cn ln(11t/n)#.
Therefore, it leads again directly to Knightet al.’s fit for-
mula, Eq.~1!. To relate the memory termh(t) that depends
so far on the tap number to the dynamics of the compac
process, i.e., to expressh(t) as a function ofA, one can take
advantage of the relationCn ln(11t/n)51/A(t)21 that fol-
lows from a combination of the aforementioned soluti
A(t) and Eq.~22!. This implies that Eq.~24! can also be
written in the equivalent form

Ȧ52h~A!A2, ~25!

h~A!5C exp@2~12A!/CnA#. ~26!

With the trivial renamingC5k andn5t, Eq. ~25! in com-
bination with Eq.~26! is obviously equivalent to Eq.~14!
and, therefore, also equivalent to the basic relaxation l
Eq. ~7!. Moreover, one infers that the exponential factor
Eq. ~26! directly results from the memory termhn or h(t) in
the stroboscopic or time-continuous description, resp
tively.

VI. SOLID-COMPACTIBLE PHASE TRANSITION

As pointed out above, a granular system behaves lik
solid for tapping intensitiesG,1 since in that case the grain
cannot lift off or decompact and subsequently recompact
response to a tap. ForG.1, the granular system is compac
ible due to tapping and its relaxational compaction dynam
is governed by Eq.~12! with only one coefficient that de-
pends on the tap intensity, namely the relaxation timet.
IntroducingQ(t)5r02r(t) as an appropriate order param
eter,Q(t) is zero forG,1 ~the solid phase! and relaxes to
the nonzero positive valuer02r(`) ~being dependent onG)
in the long time limit if G.1 ~compactible phase!. The re-
laxational dynamics is governed by the relaxation timet,
which functionally depends on the distance from the ph
transition pointG51, i.e., t5t(G21). The functional de-
pendence oft on G21 should slow down in a critical way
t(G21→0)→`, and decay rapidly forG larger than unity
since a reorganization of the grains is easier if the loosen
of the granular system as an initial response to a tap is st
ger. Although the general feature of a relaxation timet that
strongly increases when approachingG51 is supported by
the experiments of Knightet al. @4#, the existing data do no
corroborate a divergent behavior oft asG approaches unity
This is an interesting open problem for further experimen
investigations.
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VII. CONCLUSION

Despite the fact that compaction of granular matter driv
by periodic tapping is micromechanically highly comple
we have reported a rather simple macromechanical me
nism for the inverse effective void ratio that correctly repr
duces the experimental findings of Knightet al. @4#, Eq. ~1!.
By considering the asymptotic limits of our mean-fie
model, we were able to identify Eq.~14! as a smooth inter-
polation of biased void diffusion@8# and collective reorgani-
zation @14,15#. Both macroscopic mechanisms for the d
namics of the packing fraction are rather robust in the se
that the micromechanical details of the granular mate
~e.g., the shape of the particles! are of minor relevance. This
might be the underlying reason why recent numerical sim
lations of Tetris-like models with a variety of different pa
ticle shapes@16# ~e.g., ball-shaped, T-shaped, L-shaped! also
reproduce the experimental results@4#.

As far as generalizations of our mean-field model are c
cerned, the application of previously successful ideas ab
the extension of mean-field models to Langevin-type eq
tions in the context of avalanches in granular systems@18#
seems to be promising for the understanding of the spec
behavior of compaction processes@5#. On the other hand, it
remains an open question for future research whether
dynamical systems approach being used in this study
also be extended to understand the annealing behavior o
packing fraction under dynamical increase and decreas
the tap intensity@6#.
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APPENDIX

Here, we give the details leading to the relation~9!. Ac-
cording to Eq.~3!, the packing fraction is given by

r~ t !5
Vg

Vt~ t !
5

Vg

Vg1Vi1Vr~ t !
, ~A1!

which possesses the saturation limit

r~`!5
Vg

Vg1Vi
. ~A2!

From this, we obtain by straightforward algebra

r~ t !2r`52
VgVr~ t !

@Vg1Vi1Vr~ t !#@Vg1Vi #
~A3!

and finally arrive at

r~ t !2r`

r02r`
5

Vr~ t !@Vg1Vi1Vr~0!#

@Vg1Vi1Vr~ t !#Vr~0!
5

x~ t !

x~0!
5

1

X~ t !
.

~A4!
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